Studying memory, top-down

It is useful sometimes to raise your head from the ground and to have a look on the opposite site of a scientific field. Conceptually, most of the research in general is done via two approaches: top-down and bottom-up. In memory research, while some scientist are trying to identify the right receptor or gene and manipulate it with molecular preciseness (bottom-up), the others put electrodes into different brain areas and fire the entire groups of neurons (top-down).

Naturally, both approaches have their pros and cons. The greatest question in going bottom-up is “will the mechanism work on the next level of complexity?” When you go from the top, however, you will always be left with a question “How in the world did it work?”

A recent overview in Nature prompted me to look at the websites of groups doing that kind of research. There’s certainly lots of mathematical modeling and pattern recognition involved, which can lead to quite remarkable results in reverse-engeneering of neural circuitry. At the same time, reading the publication titles left me with a perception of how little we know even about such seemingly trivial circuits as CA1-CA3 in the hippocampus, which is known from 60-es or 70-es to be crucial for the memory formation. This kind of argument poses a big question mark behind the Human Brain Project. Will the neuron-by-neuron reverse-engineering of the brain help us with understanding its function? Probably not, unless someone digs from the opposite side.

 

Advertisements

Author: Slava Bernat

I did my PhD in medicinal chemistry/chemical biology of G protein-coupled receptors and then explored some chemical biology of non-coding RNA as a postdoc. Currently I'm working in a small biotech company in San-Francisco Bay area as a research chemist. I'm writing about science, which catches my attention in rss feed reader and some random thoughts or tutorials.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s