Thesis in LaTeX.

The background.

When I was writing my diploma thesis in 2009, I wanted to do it somewhat ‘special’ and I tried to write it in LaTeX (more precisely in LyX). That time there were so many geeks around Internet that praised LaTeX to be superior to any other typesetting method that I was eventually persuaded to give it a try. That time I failed miserably. Eventually I ended up writing the diploma in OpenOffice (currently LibreOffice).

Four years later I again faced the choice: either to take an easy way and to compile the PhD thesis in MS Word, or to overcome the challenge of steep learning curve of LaTeX.

Continue reading “Thesis in LaTeX.”

Epi-epigenetics: RNA methylation (updated)

Two papers appeared online on February 10th, to claim the first whole-transcriptome study of specific RNA modification, N1-methylation of adenine (m1A). To both teams’ credits, they cited each other as they learned about “competing” study.  Both papers, Li, Xiong et al. in Nature Chemical Biology and Dominissini, Nachtergaele, Moshitch-Moshkovitz et al. in Nature, overlap quite significantly but also complete each other in several aspects, and give starting insights into the role of RNA methylation in gene regulation. Continue reading “Epi-epigenetics: RNA methylation (updated)”

Catching gravitational waves

OK, seems like I am on a track of rebuilding my daily routine under new circumstances of the offline life. So it’s a good time to incorporate some blogging activity in it.

While I was away, some fascinating things happened. First of all I mean the direct observation of gravitational waves, which were theoretically predicted by Einstein in 1915 (or Poincare in 1905, if you stretch your definition of “prediction”). As with all fundamental physics experiments, the measurement was not a trivial one. It required construction of two interferometers each having two orthogonal 4 km-long tubes to detect distortion of the spacetime by a fraction of a proton diameter. Continue reading “Catching gravitational waves”

True power of 1D NMR

An interesting case study of a correct structure assignment for aquatolide appeared in JOC. It’s interesting from several points of view. First, it nicely shows how one can effectively use reach information from free induction decay (FID), which is lost (or masked) in Fourier-transformed spectra. Second, it emphasizes importance of data sharing and demonstrates crucial role of ‘research parasites‘ in scientific ecosystem. Third, the paper has seven-point manifest in the conclusions section. Continue reading “True power of 1D NMR”