β2AR: old horse’s new tricks

It’s almost four years since the Nobel prize in chemistry went to Brian Kobilka and Robert Lefkowitz for their contribution in our understanding of G protein-coupled receptor (GPCR) signaling. They did their most exciting work by studying β2 adrenergic receptor (β2AR). Yet, despite the titanic efforts, the receptor still holds lots of secrets from us. Continue reading “β2AR: old horse’s new tricks”

Skepticism about synaptic nanocolumns

Couple of days ago I’ve come across a recent paper in Nature with quite an eyebrow-raising title “A trans-synaptic nanocolumn aligns neurotransmitter release to receptors“. The title made me think as if the authors have observed hitherto unknown structures in the synaptic cleft. That would be quite a sensation! But then this sentence comes in the abstract:

These presynaptic RIM nanoclusters closely align with concentrated postsynaptic receptors and scaffolding proteins4, 5, 6, suggesting the existence of a trans-synaptic molecular ‘nanocolumn’.

Now it looked like they propose some kind of neuroscience equivalent of dark matter. You know, something that nobody knows what it is, but that certainly must be there, otherwise there’s no explanation to what we see. Continue reading “Skepticism about synaptic nanocolumns”

Molecular tribology

It’s hard to imagine more intriguing title in Angewandte Chemie International Edition than “Astringent Mouthfeel as a Consequence of Lubrication Failure“. The first impression doesn’t deceive, and the paper is really interesting and fun to read. Somehow manifestations of molecular interactions in the macroscopic world never stop amusing me. And this communication is exactly about such emergent effect. Continue reading “Molecular tribology”

Pheromone puzzle

A couple of weeks ago I attended a presentation given by Lisa Stowers from Scripps, entitled “Decision-making in the nose: a molecular rationale for the unpredictable nature of female behavior”. The catchy title did its job, so I was there, learning that reaction of female mice on male pheromones depends on (suprise-surprise!) phase of their estrous cycle. The neurobiology behind it is quite amazing, definitely worth reading about. However, my interest was triggered by one question asked after the presentation.

Continue reading “Pheromone puzzle”

Sour-tasting mechanism

Today we know whole lot about different receptors in our body. Often we know which one to target for particular disease and how the drug molecules operate on the molecular level. But it’s always interesting to learn something new about how do we sense the world around us. What molecules make us aware of sight, taste, smell, hearing and touch? The paper in the latest issue of PNAS gives some new insights in the perception of sour taste. Continue reading “Sour-tasting mechanism”

Epigenetic ant reprogramming

Epigenetics is an exciting but a weird area. It’s well recognized that messing with chromatin and chemical modifications of nucleic acids has profound consequences at the cellular and organism levels. But for me the mechanistic rationale for targeting epigenome pharmacologically was always somewhere close to throwing a monkey wrench into the clockworks and watching what will happen. It seems (not surprisingly) that in fact the effects are more predictable. Continue reading “Epigenetic ant reprogramming”

Nanopharmacology: [atomic] force awakens

Studying membrane proteins is not easy. The broad scope of the problem clearly deserved a Noble prize in 2012. Thanks to these advances, today scientists can determine structures of some membrane proteins (e.g., G protein-coupled receptors). But some of them are so huge and complex that X-Ray crystallography and NMR spectroscopy don’t help. Continue reading “Nanopharmacology: [atomic] force awakens”